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Chapter 1 – Introduction

From elementary statistics it is known that correlation does not imply causation. However, it was
shown first by Reichenbach in [Reich1956] – but his publications are largely ignored – and later by
Pearl and Cooper (e.g. in [Pearl1991] and [Cooper1997]) that, if  more than two variables are
observed,  under  certain conditions causal  relationships  can be inferred.  This  approach we call
“inductive  causation”  in  this  report.  Controversial  discussions  concerning  the  advantages  and
disadvantages are given in [CooGly1999] and [BorKru1999].

Among other objectives inductive causation can be used as an explorative tool to enhance the
understanding of data and to generate working hypotheses.  That means, rather than to infer a
whole network of (causal) relationships, as for example in Bayesian networks, only the relationships
among small subsets of variables are inferred and then the result is viewed as a causal rule set.
Furthermore,  the  results  will  serve  only  as  a  guidance  and  working  hypotheses  for  further
experiments. 

In  the  first  chapter  a  short  introduction to the topic  of  data  analysis  on relationships  between
variables is given. The second chapter introduces the MELK data, the notation and some further
definitions. The third chapter describes the LCD-algorithm developed by Cooper [Cooper1997]
and a possible  enhancement given by Brin et al.  [BSMU2000]. In Chapter 4 the application of
Extended LCD for our purpose is discussed. Some measures for dependence and independence
are introduced in Section 4.3, Section 4.4 describes our own implementation, and in Chapter 5
our results are discussed.

1.1  Different Methods for Data Analysis
There are many approaches  that  aim at  making  inferences  about  (causal)  relationships  among
variables. Two commonly used approaches are association rules and Bayesian networks. 

Association rule induction tries to find frequent item sets. It generates rules of the kind: “if variable A
and variable B are observed, then variable C is likely to be observed, too”. The most popular
approach is called the Apriori-Algorithm. See [AgrSri1994] for an overview. One major application
of  association rules  is  market basket analysis,  since association rule algorithms can handle large
datasets.  Unfortunately,  association  rules  cannot  be  used  to  find  causal  relationships  between
variables. 

Bayesian networks aim at describing relationships between variables which can be interpreted as
possible  causal  relationships.  They combine probability  and graph theory.  A Bayesian network,
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Introduction

which is a special case of a graphical model, represents the joint distribution over a set of variables,
where  each  variable  is  represented  by  a  node  in  a  graph.  Edges  represent  the  relationships
between variables – missing edges correspond to independence relationships between variables.
The direction of an edge can be interpreted as causal influence. See [Pearl1992] or [BorKru2002]
for an overview over this topic.

Based on the same principle as used for Bayesian networks, Cooper [Cooper1997] and Brin et al.
[BMSU2000] proposed algorithms that work only on three variables. The output for each triplet is
either a certain causal relationship among the three variables, a set of possible relationships, or a
“don't know” . Thus, the aim of these approaches is more conservative concerning its output, since
there is no need to construct a complete network of causal relationship between all variables.

The reasons to use the approach of Cooper and Brin et al. are the difficulties that exists when
interpreting edges as causal influences in other approaches that infer the whole (causal) network.
See[CooGly1999] and [BSMU2000] for an overview.

1.2 Data Analysis for  MelTec
MelTec is a bioscience company. The main research interest of MelTec is the development of
biotechnological systems for the exploration of the human proteomics to enhance and facilitate the
drug  discovery  and  drug  development  process.  It  is  possible  to  improve  the  accuracy  and
predictability in the drug discovery process by a better understanding of cellular networks and the
interdependence of proteins.

The goal of this work is to assist biological and medical scientists in their analysis of MELK1 data. The
MELK data consists of experiments where biological markers stand for a certain proteins, protein
classes or biological structures. However, the aim is not to find frequent groups of items, but to
find certain markers (proteins) which are responsible for the occurrence of other markers.

To determine  a  complete  causal  model  of  the  MELK data  is  computationally  expensive.  The
approaches of Cooper and Brin et al. in comparison to association rules and complete Bayesian
networks seem to be more useful for MelTec's purposes of an explorative tool. The scope of this
work is to apply the approaches of Cooper and Brin et al. to MelTec's data and to assess their
merits.

1 MELK is an acronym, which stands for “Multi Epitop Ligand Kartierung”.
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Chapter 2 – MELK data and Basic Definitions

In Section 2.1 a short introduction to the MELK technology and the interpretation of its data as a
multivariate  probability  distribution  is  given.  Basic  definitions  concerning  probability  theory  and
hypothesis  testing  are  introduced  in  Section 2.2 and  Section 2.3.  In  Section 2.4 further
prerequisites are given.

2.1  MELK data
Meltec's  proprietary  MELK  robotic  technology  produces  complex  protein  data  in  the  field  of
bioscience. The MELK data is based on a biological sample for which a stack of n fluorescence
images is produced. Each of the n images corresponds to one biological marker standing for a
certain protein, a protein class or a biological structure (e.g. cell nucleus). The images within the
stack are perfectly  aligned – so the pixels  with  the same coordinates  correspond to the same
biological region. Then, for each image a binary image is derived, and for each stack pixel a binary
vector is generated representing all markers for the same biological region. The process is shown
in Figure 1.

The images are up to 2048 x 2048 pixel large, and there are up to 100 images in one stack. Thus,
there can be up to four million 100-dimensional binary vectors. Therefore the efficiency of the
algorithm is a crucial aspect.
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Figure 1: From MELK images to binary data
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MELK data and Basic Definitions

2.2 Basic Definitions
Random variables will  be denoted by capital letters (A,B,C and A1,...,Am). The same notation is
used  for  nodes  in  graphs.  The  observed  values  of  these  random  variables  are  denoted  by
lowercase letters (a,b,c  and a1,...,am). 

P(A = a) denotes the probability of random variable A taking value a. P(A = a,B = b) stands for the
joint event A = a and B = b. P(A = a|B = b) stands for the conditional probability of A = a given
B = b. Whenever there is no danger of confusion,  A is used as abbreviation of A = a.

Intuitively, independence means that knowing the value of one variable makes it neither more nor
less probable that another random variable has a certain value. Formally, independence between
random variables is defined as:

Two random variables A and B are independent, if and only if

P(A = a,B = b) = P(A = a) P(B = b) for all a,b 

holds. This will be denoted by indep(A,B).

Conditional independence is defined as:

The  random variables  A  and  B  are  conditionally  independent  given  another  random
variable C, if and only if

P(A = a,B = b|C = c) = P(A = a|C = c) P(B = b|C = c) for all a,b,c

holds. indep(A,B|C) is used to denote this.

The following definition of dependence is commonly used:

Two random variables A and B are dependent if they are not independent. This will be
denoted by dep(A,B), and dep(A,B|C) respectively.

In Section 4.2 this definition will be extended.

2.3 Hypothesis Testing
The statistical procedure to make a decision between two contrary hypothesis about the process
that  generated a certain data  set is  called hypothesis  testing.  One hypothesis  is  called the null
hypothesis H0. As an example, for a population parameter q, the null hypothesis could be that the
population  parameter  is  smaller  or  equal  than  a  certain  value  q0 (H0: q ≤ q0).  The  second
hypothesis is called alternative hypothesis HA. For the example the alternative hypothesis would be
that the population parameter exceeds the value of q0 (HA: q > q0). The alternative hypothesis will
be accepted if  the observed data  values  are sufficiently  improbable under  the null  hypothesis.
Otherwise,  the  null  hypothesis  is  not  rejected.  But  not  rejecting  the  null  hypothesis  is  not
equivalent to accepting the null hypothesis.

The decision to reject the null hypothesis is made by observing the value of some statistic whose
probability distribution is known under the assumption that q0 is the true value of q. Such a statistic
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MELK data and Basic Definitions

is called test statistic. The critical region for a test represents the values of the test statistic that lead
to rejection of the null hypothesis. The probability that the observed value of the test statistic will
fall into the critical region by chance if  q = q0 is called the level of significance of the test  a. In a
hypothesis testing study, a  is the probability of committing a Type I error (see below).

Two possible types of errors can occur:

• Type I: the null hypothesis H0 is rejected, even though it is correct.

• Type II: the null hypothesis H0 is accepted, even though it is false.

2.4 Further  Prerequisites
For MELK data  as  defined in Section 2.1 the biological  markers  are viewed as  binary random
variables. The following contingency table are examples for observed data of a binary dataset with
dataset size N. ni. denotes the sum over a row, and n.j denotes the sum over a column.

B = b1 B = b2

A = a1 n11 n12 n1.

A = a2 n21 n22 n2.

n.1 n.2 N

Oi,j will  denote the  random variable  corresponding  to an entry  of  a  contingency table  and pij

denotes the probability P(A = ai,B = bj).

For MELK data this table could be:

B = 0 B = 1

A = 0 20 300 320

A = 1 200 400 600

220 700 920

where (B = 1,A = 0), for example, is the number of pixels,  where protein B is expressed and
protein A is not expressed. 

Let (A,B) be random variables. Then let h be a function and fA be a distribution function of A. The
following definitions are made:

• the expected value
[ ] ∫= da (a) (a)(A)E Afhh

• the mean for A
[ ]AEA =µ

• the variance of A

( )[ ]2
A

2
A AE µσ −=

• the covariance of A and B
( )( )[ ]BABA, BAE µµσ −−=
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Let { (ai,bi) : i = 1, ... , n } be a set of observations of the random variables (A,B), then

• mA is estimated by

∑
=

=
n

1i
ia

n
1

a

• the variance of A is estimated by

( ) 




 −= ∑

=

2n

1i

2
i ana

1-n
1

AVar

• the covariance of A and B is estimated by

( ) 




 −= ∑

=

banba
1-n

1
BA,Cov

n

1i
ii
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Chapter 3 – The LCD-Algorithm and Extended
LCD

The LCD-Algorithm by Cooper [Cooper1997] and the Extended LCD by Brin et al. [BMSU2000]
are designed for an efficient discovery of  possible  causal  relationships  from large datasets.  The
techniques are based on the same principles as learning Bayesian networks. The LCD-Algorithm
uses tests of dependence, independence and conditional independence to restrict possible causal
relationships  between  variables.  It  can  find  rules  of  the  type  “A  causes  B  and  B  causes  C”
(A ® B ® C) or “B causes both, A and C” (A ¬ B ® C)2. The Extended LCD-Algorithm by Brin et
al. in [BMSU2000] uses an additional rule type to find also rules of the type “B is caused by both, A
and C” (B ® A ¬ C). 

In Section 3.1 we show the connection of the LCD-Algorithm and the Extended LCD to Bayesian
networks. Further assumptions and the basic rules for causal discovery are given in Section 3.2.

3.1  Motivation through Bayesian Networks
Bayesian  networks  [Pearl1988]  and  [Neapol1990]  are  used  to  represent  causal  relationships
among random variables. They combine the probability distribution over a set of random variables
with  mathematical  graph theory. The graph for a Bayesian network is  a directed acyclic  graph
(DAG)3 where each edge from a node to another node can be interpreted as a (direct) causal
influence.  These  influences  are  quantified  by  conditional  probabilities.
Constraint-based  [Pearl1991]  and  [Sprites1993]  as  well  as  Bayesian
methods [CooHer1992] were proposed for learning Bayesian networks
from observed data.

Figure 2 (from  [Kruse2004])  shows  the  structure  of  a  possible  causal
Bayesian network, where V = {A,B,C,D,E} is the set of nodes and each
node  represents  a  certain  system  variable.  It  shows  that  metastatic
cancer (A) can cause a brain tumor (C) which causally influences whether
the  patient  falls  into  coma (D)  or  experiences  severe  headaches (E).

2 The actual algorithm of Cooper is slightly different from how it is presented here. However, dropping a few minor
additional assumptions (e.g. it is known that a node has no causes), it is basically the same as given below.

3 A directed acyclic graph is defined as graph G = (V,E) in which each edge in E has a direction and no node in V is its
own ancestor.
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The LCD-Algorithm and Extended LCD

Metastatic cancer can also lead to an increased serum calcium value (B) which makes it possible
that the patients falls into coma, too.

Causal  Markov  Condition
Formally, independence relationships represented by the structure of a Bayesian network are given
by the Markov condition (see [CooGly1999] Section 4.4.):

Let G be a Bayesian network with node set V. Let P be a probability distribution over the
nodes in V. The Markov condition is satisfied if and only if for every node A in V it holds
that, according to P, node A is independent of its noneffects (nondescendants) in G given
its direct causes (parents) in G.

For the Bayesian network shown in Figure 2 this means, that the chance of severe headaches (E)
will  be  independent  of  metastatic  cancer (A),  if  it  is  known  whether  the  patient  has  a  brain
tumor (C) or not.

The Markov condition permits the factorization of a joint probability distribution [Pearl1988]:

( ) ( )( )ii

n

1in21 A|parentsAP,...AA,AP
=

Π=

Parents(Ai) denotes the set of nodes with edges pointing to Ai. If Ai   has no parents, parents(Ai) is
the empty set and thus P(Ai |parents(Ai)) will be P(Ai).

d-Separation  Criterion
In the theory of Bayesian networks the so-called d-separation criterion plays an important role. It
serves as a method to read the independence statements from the causal structure given by the
graph,  that  will  hold  in  the  corresponding  probability  distribution.  It  captures  all  conditional
independence relationships that are implied by the Markov condition and it allows to determine
whether two variables are conditionally independent given a set S of variables. This is possible if
they are d-separated in the causal structure by S.

In Bayesian networks there are three different types for connections between A and B and B and
C, where A,B,C are nodes (or sets of nodes) in a causal structure.

head-to-tail

A CBA CB
tail-to-tail

A CBA CB
head-to-head

A CBA CB

Formally, d-separation4 is defined as [Kruse2004]:

Let G = (V,E) be a directed acyclic graph, and A,B,C disjoint sets of nodes in V. A and C
are d-separated by a set S Í V \ {A,C}, if all paths5 pi between A and C are blocked by
one of the following conditions:

4 Remark:  The  Markov  condition  and  the  d-separation  criterion  are  equivalent,  if  and  only  if  the  probability
distribution is strictly positive (there are no zero probabilities).

5 In a graph a path is a sequence of nodes such that from each of the path's nodes there is an arc to the successor
node. 
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The LCD-Algorithm and Extended LCD

a) A path p is blocked by S, if at least one pair of sequenced edges in p is blocked.

b) Two head-to-tail or tail-to-tail edges with common node B are blocked if B is in S.
c) Head-to-head edges with common B are blocked if B and all descendants of B are not

in S.

If S Í V \ {A,C} d-separates the nodes A and C, then A and C are independent given S.

If A and C are not d-separated by S, there is no statement given by the d-separation criterion about
the independence or dependence of A and C given S. It is possible that there are even more
independences in the corresponding probability distribution.

Even though neither Cooper [Cooper1997] nor Brin et al. [BMSU2000] directly motivated their
rule types through the d-separation criterion, the d-separation criterion seems meaningful for two
reasons:

1. It shows directly the connection to Bayesian networks.
2. It turns out that the weakness of both approaches might be improved by adopting ideas

from Bayesian networks.

3.2 Determining Causal Relationships
Two additional conditions are necessary to constrain possible causal relationships in a given dataset:
the causal faithfulness condition and the statistical testing assumption.

Causal  Faithfulness  Condition
The  causal  faithfulness  condition  specifies  the  probabilistic  dependence  relationships  between
variables:

Variables  are independent only  if  their  independence is  implied by the causal  Markov
condition.

According to the causal faithfulness condition, in Figure 2, examples of dependence relationships
are:  i)  metastatic  cancer  and brain  tumor are  dependent  [dep(A,C)],  ii)  metastatic  cancer  and
severe headaches are dependent [dep(A,E)], and iii) severe headaches and coma are dependent
[dep(D,E)]. An explanation for iii) is that having severe headaches increases the chance of having a
brain tumor which increases the chance to falling into coma. So the two variables D and E become
dependent because they have the common cause C (i.e. a so-called confounder6).

Statistical  Testing  Assumption
The following assumption is given in [ManCoo2001]:

6 A  confounder  suggests  a  direct  (causal)  dependence  relationship  between  variables,  but  there  is  no  such
relationship between this variables.
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A statistical  test  performed  to  determine  independence (or  alternatively  dependence)
given a finite dataset will  be correct relative to independence (dependence) in the joint
probability distribution that is defined by the causal process under study.

The causal Markov condition and the causal faithfulness condition describe probabilistic relationships
of dependence and independence, but in causal discovery there is no certain knowledge about
probabilistic relationships among variables, since one has only a finite amount of data. Therefore, in
order to make inferences, one has to assume that the dependence and independence relationships
in the underlying  probability distribution are correctly identified by statistical tests.

CCC  Causality
Cooper  [Cooper1997]  proposes  rules  based  on  dependency  statements  and  the  test  for
conditional independence, in order to determine whether there is a causal relationship between
dependent variables. This is the only rule type used in the original LCD-Algorithm and it is called
CCC rule. CCC stands for three correlations among the variables.

Let A, B and C be variables that are pairwise dependent. If A and C are independent
conditioned  on B,  then  – in  the  absence of  hidden  and confounding  variables  –  it  is
possible to infer that one of the following causal relations exists between A, B and C:

A ® B ® C     A ¬ B ® C     A ¬ B ¬ C

If there is no cause for A, one can assume that only the first rule is possible – even if there
are hidden or confounding variables.

If  it  is  known that,  for  example,  the  variable  A has  no causes,  the only possible  CCC rule  is
A ® B ® C. This makes it possible to reduce the number of relationships to be tested afterwards.
Additional enhancements and further performance improvements for the original LCD-Algorithm –
but not for the Extended LCD – are discussed in [ManCoo2001]. 

CCU Causality
Brin et al. (in [BMSU2000]) extended the LCD-Algorithm by another rule; the so called CCU rule.
CCU stands for two correlated and one uncorrelated variable pairs. It makes it possible to find
head-to-head structures in the data. 

Let A, B and C be variables such that A and B are dependent, A and C are dependent,
and B and C are independent. If B and C become dependent conditioned on A, then, in
the absence of hidden and confounding variables, it is possible to infer the following causal
relationship:

B ® A ¬ C

The  CCC rule  and  the  CCU rule  determine  causal  relationships  of  triplets  that  fulfill  the  d-
separation criterion of a Bayesian network. Therefore, the Extended LCD goes through all triplets
and tests each rule. If a CCC rule (e.g. A ® B ® C) is found, it may be that there is a hidden or
confounding variable D mediating between B and C (e.g. A ® B ® D ® C or A ® B ¬ D ® C).
However, this result is not useless, since B and C are still causally related – even though indirectly.

10
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Extended LCD [BMSU2000]
Input: V – set of variables
Output: list of possible causal relationships as triplets

for all A,B,C in V with A ≠ B and A ≠ C and B ≠ C 
if dep(A,B) and dep(A,C) and dep(B,C) and indep(A,C|B) then // (CCC-rule)

output 'A ® B ® C  or  A ¬ B ® C  or  A ¬ B ¬ C'
endif
if dep(A,B) and indep(A,C) and dep(B,C) and dep(A,C|B) then // (CCU-rule)

output 'B ® A ¬ C'
endif

endfor
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Chapter 4 – Application of Extended LCD

In Section 4.1 a motivation for not using the standard chi-squared test for independence and why
to  use  “strong  dependence”  is  given.  Section 4.2 introduces  “strong  dependence”  and  “weak
independence”. Alternative measures for dependence or independence and their suitability for our
purpose  are  discussed  in  Section 4.3.  The  implementation  of  our  modified  LCD-Algorithm
(MelCD) is given in the last section.

4.1  Motivation
The LCD-Algorithm and its extension by Brin et al. are based on independence and dependence
statements. Usually, variables are defined as dependent if and only if they are not independent.
This can lead to a – at the first glance – counterintuitive behavior, since a small deviation from the
null  hypothesis  can be significant.  The following tables  of  observed values that  have the same
underlying probability distribution may serve as an example.

B = b1 B = b2 B = b1 B = b2 B = b1 B = b2

A = a1 49 51 A = a1 98 102 A = a1 4900 5100

A = a2 51 49 A = a2 102 98 A = a2 5100 4900
Table 1 Table 2 Table 3

Using  the  standard  chi-squared  test  (see  Section 4.3)  to  test  for  independence,  one  gets  no
indication of dependence (Table 1), a borderline indication of dependence (Table 2), and a strong
indication  of  dependence  (Table 3).  This  seems  to  be  counterintuitive,  since  the  underlying
probability  distribution of  variables  A and B stays  the same.  Only  the number of  observations
increases. This is a general phenomena in statistical testing, and the correct interpretation is that in
Table 1 “there is not enough evidence (data) to reject the independence assumption”. For Table 3
there is “significant evidence for rejecting independence”. This means, statistical testing can detect
even the weakest deviation from the null hypothesis (in our case the assumption of independence),
provided  that  enough  data  is  observed.  For  the  MELK  data  we  usually  have  a  large  N;
N = 2048 x 2048 pixel. However, detecting even the weakest deviation from the null hypothesis
is unsatisfactory for our purposes, since it seems plausible for us to ignore “weak dependencies”.
Therefore, “strong dependence” will be defined in Section 4.2. 

Our second major modification of the Extended LCD concerns the – for this purpose commonly
used – chi-squared test of independence. Due to the fact that the chi-squared test has certain

13
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assumptions which can be violated – especially in an automated process that uses the chi-squared
test many times – we looked at other measures for testing independence. They are introduced
and investigated in Section 4.3.

4.2 Strong Dependence and Weak Independence
We want to ensure that dependence statements are strong dependencies between variables, since
for CCC and CCU rules, which require dependencies between variables, it is intuitively clear that
the stronger the dependence of its parts, the “stronger” the rule itself. In other words: the weakest
dependence statement determines the confidence in the rule itself. 

Instead of using the standard definition of dependence as given in Section 2.2, we introduce “strong
dependence“. Strong dependence is defined as follows:

Let A and B be random variables. Let T(A,B) be a measure for independence that takes
the  value  tindep when  A  and  B  are  independent.  A  and  B  defined  to  be  “strongly
dependent”, if and only if:

T(A,B) – tindep < dqneg.    or    T(A,B) – tindep > dqpos.,

where qdep = (dqneg.,dqpos.). This will be denoted by depT,q[dep](A,B) or shortly depT,q(A,B).

Corresponding to the strong dependence, weak independence will be defined as:

Let A and B be random variables. Let T(A,B) be a measure for independence that takes
the  value  tindep when  A  and  B  are  independent.  A  and  B  defined  to  be  “weakly
independent”, if and only if:

T(A,B) – tindep > iqneg.    and    T(A,B) – tindep < iqpos.,

where  qindep = (iqneg.,iqpos.).  This  will  be denoted by indepT,q[dep](A,B)  or shortly  indepT,q

(A,B).

Note, that dqneg. and dqpos. for strong dependence and iqneg. and iqpos. for weak independence are not
the same. Furthermore, it makes only sense if dqneg. for strong dependence is smaller or equal than
iqneg. for weak independence, and  dqpos. for strong dependence is greater or equal than  iqpos. for
weak independence. 

Whenever the meaning is clear, dep(A,B) and indep(A,B) will be used to denote depT,q(A,B) and
indepT,q(A,B), respectively.

According to the definitions of strong dependence and weak independence qindep serves as cutoff
tuple for weak independence and  qdep serves as cutoff tuple for strong dependence. For values
between independence and dependence cutoff, we define the relationship as “don't know”. Thus,
the following hypothesis test with the null hypothesis H0 and the alternative hypothesis HA will be
used:
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hypothesis test for weak independence (qindep = (iqneg.,iqpos.)):

H0: T(A,B) – tindep Ï [iqneg.,iqpos.]

HA: T(A,B) – tindep Î (iqneg.,iqpos.)

hypothesis test for strong dependence (qdep = (dqneg.,dqpos.)):

H0: T(A,B) – tindep Î [dqneg.,dqpos.]

HA: T(A,B) – tindep Ï (dqneg.,dqpos.)

qdep and  qindep  allows the user to define a “level  of  belief”  in  a dependence and independence
relationship,  and one can define  a  range of  non-interesting  values  which  are labeled  as  “don't
know”.

4.3 Different Measures for Independence and
Dependence
Chi-squared  Test
The chi-squared  test  is  a  standard test  for  independence.  The  chi-squared test  measures  the
degree of independence between different variables. For this purpose, it compares the observed
case with the expected cases. 
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where Oi,j are the observed values as defined in Section 2.4, and Ei,j is the expected value under
the null hypothesis of independence and is estimated by:
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C2
1 is the chi-squared distribution with one degree of freedom. 

The chi-squared test has the following disadvantages: 

X is only approximately (as N ® ¥) a chi-squared-distributed random variable. For small N the
approximation  can  be poor,  especially  if  the  expected  values  are  small.  The  following  rule  is
frequently given in statistics books (e.g. in [MilArn1990] p. 581). It recommends the use of chi-
squared test only if:

• all cells in the contingency table have an expected value greater than 1

• at least 80% of the cells in the contingency table have an expected value greater than 5

These  conditions have to be checked  each time the test  is  applied.  In  our  case,  the  test  for
independence will be applied many times, and it is crucial not to ignore the validity of the test. This
is  particular the case when testing for conditional  independence, since the cell  frequencies will
become smaller when we condition on variables.
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Pearson  Correlation
One measure used to determine whether or not two random variables are linearly dependent is
the sample estimate of the Pearson correlation. The Pearson correlation is defined as:
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The Pearson correlation assumes values between -1 and 1. Values close to 1 and -1 indicate a
strong positive and negative dependence. For independent variables the parameter  r is zero. A
value of zero, however, does not imply independence between two variables in every case, since
the relationship could be non-linear. 

In the binary case, there is the following relationship between the Pearson correlation and the chi-
squared test. A proof is given in [BMSU2000], Appendix A.

( ) ( ) 22 BA, NBA, ρ⋅=X

where  C2(A,B)  and  r(A,B)  denotes the  computation for  the  chi-squares  test  and the Pearson
correlation, respectively.

A probability distribution for the Pearson correlation is given, for example, in [MilArn1990]. It is
shown,  assuming (A,B)  are bivariant  normal,  that  the following transformation for  the Pearson
correlation is approximately normal distributed.
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Unfortunately, there are some problems using the Pearson correlation with binary data. This holds
especially in the case of a conditional test, since the variance in a vector may be zero. In this case
the Pearson  correlation is  undefined.  In  some special  cases  the  Pearson  correlation  does  not
provide an intuitive mapping of the relationship between the variables.  It  becomes small,  even
though the vectors seem to be strongly related – see the following example. 

A = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1)
B = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)

r = -0.0667

Nevertheless, the Pearson correlation is a useful measure for dependence and independence.

Scalar  Product
The scalar product is a widely used measure for assessing the similarity of vectors (especially in the
field of text mining). Regard the example above – where A and B seem to be strongly related – the
scalar product provides a more intuitive interpretation of the relationship between two vectors
than the Pearson correlation does.

In the binary case and according to Section 2.4 the scalar product simplifies to:

N
n

N
n

N
n

N
n 21122211 −−+
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The value of the scalar product is in the domain [-1,1]. 1 stands for similarity between two vectors
and -1 stands stands for the case where one vector is the converse of the other vector.

Unfortunately, for certain contingency tables representing dependent and independent data the
scalar  product  returns  the  same value.  It  is  not  possible  to  determine  whether  variables  are
dependent or independent (the following table shows an example), since (x+g) + (x-g) - x - x = 0
holds for all g £ x, but for a large g one would like to infer dependence. 

x + g x

x x - g

We  can  conclude  that  the  scalar  product  is  not  a  useful  measure  for  dependence  and
independence.

Log  Odds  Ratio
The odds are defined as the quotient of the probability of success divided by the probability of
failure – or as the quotient of number of successes divided by the number of failures. 

The odds ratio is defined as the ratio for odds for variable A when B = b1 and B = b2. Using the
notation of Section 2.4, this becomes:

2112

2211

22

21

12

11

n n
n n

ORby  estimated  and
)bB|aP(A
)bB|aP(A

)bB|aP(A
)bB|aP(A =

==
==

==
===Θ

Using the natural logarithm of the odds ratio one gets the so called log odds ratio (logOR). The log
odds ratio is zero for independent data. Large positive or negative values indicate dependent data.
An  advantage  of  taking  the  natural  logarithm  of  the  odds  ratio  is  that  the  log  odds  ratio  is
approximately normal distributed for large values of N. 
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In general,  the log odds ratio provides good results. The disadvantage is that it works only on
binary data. 

4.4 Implementation of MelCD
Our implementation is based on the Extended LCD algorithm (see Section 3.2). Furthermore, the
concepts of “strong dependence” and “weak independence” are included. The log odds ratio with
and without bootstrapping, and the Pearson correlation (which is linearly related to the chi-squared
test in the binary case – [BMSU2000], Appendix A) are used as measures for independence. Since
the Pearson correlation has for extreme contingency tables a numerical advantage over the chi-
squared test, only the Pearson correlation and the log odds ratio are implemented. From hereon,
our algorithm will be called MelCD (for “MelTec Causal Discovery”).
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Generating  rule- based  Datasets
To test  MelCD datasets  are generated synthetically.  Therefore an algorithm was implemented
which allows to specify the following parameters: the underlying network structure of a data set, an
activation function for each node, the variance of random noise, and the number of observations to
be generated. Due to this, it is possible to test how scalable the algorithm is and it allows to verify
which rules should be found – and which should not be found.

The network structure differentiates nodes of the first layer7 and of further layers. The nodes in the
first layer are initialized with 0 and 1 according to a distribution that is defined by the user. The
further nodes are connected to a subset of nodes from previous layers. The connections can be
chosen freely, but cycles are not permitted.

The definition of the network structure is based on the following steps:

• Initialization of the first layer: 
The initial activation of the nodes of first layer is generated according to the distribution
table specified by the user.

• Propagating the initial values from the first layer through the rest of the network: 
For each node which is not in the first layer its own value is determined by its parents, its
activation function act(A), and its noise parameter e. 

The activation function8 describes the state whether a node in the network is active or inactive. In
our case the activation function replaces the probability tables, which are used in Bayesian networks
to describe the relationships among the nodes, and it is defined as:

( ) ( ) ( )( )k21 B, ... ,B,Bact(A) gggf=

where Bi Î parents(A), k is the number of parents of A and g(X) = act(X) – ½+E with  E ~ N
(0,e). The function f can be chosen freely, but f : R ´ R ´ ... ´ R ® {0,1} must hold. Usually a
majority  decision  among the parent  nodes  is  used  as  function  f,  but  other  functions  are  also
possible.  In  the  case of  a binary function  f,  as  mentioned below, the values of  g(X)  must  be
converted to binary values. The resulting datasets are represented by binary matrices.

Searching  for  Causal  Rules
Our implementation is based on the Extended LCD (see Section 3.2) and it uses the following
steps to find casual rules:

• Determine  positive  and  negative  dependence,  independence,  and  “don't  known”
relationships between all variable pairs. The results are stored in an extended adjacency
matrix, where positive and negative dependence relationships between the variables are
distinguished.

• Test for CCC and CCU rules based on triplets which comply with the unconditioned
statements in the CCC and CCU rules and test for conditional independence to conclude

7 The nodes of the first layer can be interpreted as the parentless nodes of the network.

8 The term activation function is a commonly used concept in the theory of Artificial Neuronal Networks (see e.g.
[KröSma1996] for details).
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a CCC rule or test for conditional dependence to conclude a CCU rule – “don't know”
relationships will be ignored.

To determine dependence and independence relationships, the concept of weak independence
and strong dependence is used according to Section 4.2. As a simplification qneg. = - qpos. is defined
for  our test,  since the Pearson correlation and the log odds ratio  are symmetric  around zero
(tindep = 0). qindep and qdep will be denoted as qlower and qupper, respectively. Thus, the hypothesis tests
will change to:

hypothesis test for weak independence:
H0: T(A,B) Ï [-qlower,qlower]

HA: T(A,B) Î (-qlower,qlower)

hypothesis test for strong dependence:
H0: T(A,B) Î [-qupper,qupper]

HA: T(A,B) Ï (-qupper,qupper)

Evaluation Measures
The results for the log odds ratio cannot be directly compared to the Pearson correlation without
further conditions, since the log odds ratio takes values in (-¥,¥) and the Pearson correlation has
the  domain  [-1,1].  So  it  was  necessary  to  find  a  transformation  to  make  the  cutoff  values
commensurable. Figure 3 shows a plot of Pearson correlation versus log odds ratio of synthetic
datasets generated by networks as described above. A linear relationship with slope 6 seem to be
plausible. This makes it possible to get comparable cutoff-values and thus to compare the results of
both measures, the Pearson correlation and the log odds ratio.

To evaluate the quality of the results we used a scoring function for each rule. Each CCC or CCU
rule is derived by testing four dependence or independence statements. For each test a score is
computed by: 

θ
θ-B)T(A,

  B)score(A, =

where  q is  the  cutoff  value,  which  is  used  to  decide  whether  there  is  dependence  or
independence, and T(A,B) is the used measure for independence between the variables A and B.
This function can serve as a heuristic to find the most promising results. For the four tests for a
CCC or CCU rule the minimum and the median value are given as output. This scoring function
provides the facility to sort the output according to its (possible) importance.

Test Using the Pearson Correlation
The approximate distribution of the Pearson Correlation allows to test for independence, “don't
know” and dependence, where r is the observed correlation in the dataset, and rq[lower] and rq[upper]

the confidence interval limits depending on the freely selectable cutoff values qlower and qupper and a
certain significance level a.

The following tests are performed to determine if there is independence, dependence or neither.

independence:

H0: |r| ≥ rq[lower]

HA: |r| < rq[lower]

dependence:

H0: |r| ≤ rq[upper]

HA: |r| > rq[upper]

“don't know”:

rq[lower] < |r| < rq[upper]
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Test Using the Log Odds Ratio
The distribution of the log odds ratio is only an approximation and it holds only for large N. The
approximation  is  poor  for  small  N  and  for  extreme  contingency  tables.  We  decided  to  use
bootstrapping9 for small N and extreme contingency tables, and to use the approximation in all
other cases, since bootstrapping is time consuming. To decide whether the approximation can be
used – or whether it is necessary to use bootstrapping – we investigated different measures based
on the contingency table, which will be analyzed. 

The quality of the approximation of the log odds ratio (see Section 4.3 – Log Odds Ratio) as a
normal distributed random variable depends on two parameters: pmin and N, where pmin is the
minimal cell proportion. Therefore it seems plausible to require the minimal relative cell frequency
to be “large enough”. An approximate distribution for a proportion is given by:
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Therefore we plotted (see Figure 4) for simulated table data clower versus errorlogOR. errorlogOR is
defined as:

logOR

ci -ci
 error

bootstrapapprox

logOR
αα=

where  cia is  the  confidence  interval  limit  for  the  log  odds  ratio,  which  is  calculated  by  the
approximation or by the bootstrapping method.

This shows that for a value of 0.025 the approximation error is acceptable. Thus this value is used
to decide whether we use the approximation or the bootstrapping method is necessary.

The following tests are performed to determine if there is independence, dependence or neither,
where l is the observed log odds ratio value for the data set, and the confidence interval limits are
lq[lower] and  lq[upper] depending on the freely selectable cutoff  values  qlower and  qupper and a certain
significance level a.

independence:

H0: |l| ≥ lq[lower]

HA: |l| < lq[lower]

dependence:

H0: |l| ≤ lq[upper]

HA: |l| > lq[upper]

“don't know”:

lq[lower] < |l| < lq[upper]

9 Bootstrapping ([Efron1994] and [DavHin1997]) is a resampling strategy, where the original sample is viewed as the
empirical distribution from which new samples can be drawn. For this resampled data it is possible to calculate, for
example, a confidence interval of arbitrary parameters. In our case, we calculate a confidence interval for the log
odds ratio.
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Figure 3: Plot for estimating a linear factor between Pearson correlation and log odds ratio based on  synthetic
datasets generated by synthetic networks
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Figure 4: Estimation for decision if approximation or bootstrapping should be used (for
random contingency tables and lower and upper bound)
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Chapter 5 – Results

In this chapter we discuss our results and point out problems of MelCD.

As mentioned above, we used synthetic data sets to evaluate the MelCD algorithm. At least, one
would expect  from the algorithm that  it  finds  rules,  which  are  used as  basic  definition of  the
network. Furthermore, one would expect rules, where a node in a causal chain is left out, since
the algorithm tests only for three variables and a causal chain can consists of even more variables. 

We classified  the results  in  four  groups  (in  parenthesis  the  abbreviations  used in  Appendix  A,
Table 4 and Table 5 are given):

• type 1: “rule is in rule set” (+): the rule which is found by the algorithm is one of the rules
which were used to generate the dataset.

• type 2: “rule is not in rule set, but it seems to be useful” (~): a rule of this type satisfies
the d-separation criterion in the graph given by the generative rule set.

• type 3: “wrong direction rule” (wd): the rule is of type 1 or type 2, but the direction of its
edges is incorrect.

• type 4: “rule is not in rule set and does not seem to be useful” (-): all other rules.

In our point-of-view the “best result” would be that most of the rules given by the rule set (type 1)
are found. Furthermore, there can be type 2 rules in the best result. To be more realistic, a good
result for our application is that the algorithm has found type 1 and type 2 rules and it has found no
or only a few type 3 and type 4 rules. As an example, we would declare a result with only three
type 1 rules a “better” than a result with more type 1 rules but also with a few type 4 rules. This
makes sense for us, since our goal is to generate useful working hypothesis and not to exploit the
complete version space.

During the experiments the Pearson correlation and the log odds ratio were used as measures for
independence and dependence. The chi-squared is not used, since a linear relationship between
chi-squared test and Pearson correlation is known (see Section 4.3). 

In our experiments10 we used as standard parameters a significance level a = 0.01 to estimate the
confidence interval, a dataset size of 10 000, and a noise parameter e = 0.4 which corresponds to
“medium noise” in the dataset. With more noise it is clear that the number of rules that will  be
found is smaller, since the algorithm finds fewer dependence relationships among the variables.

10 All experiments are performed on an Athlon system with 1250MHz running under Windows 2000 with 1024
Mbyte main memory and Matlab 6.5 R13.
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With less than “medium noise” and certain activation functions we discovered the strange effect
that more “not useful” rules are found. This effect results due to the fact that the child nodes are
more or less “clones” of their parents. So there are dependence relationships among these child
nodes which should not be there. An example is given in Figure 5: the CCU-rule A2 ® A4 ¬ A8 is
found, since node A8 is a clone of node A6 which is a combination of node A1 and node A3 and the
nodes A1 and A3 are parents of node A4. 

In Figure 6 one can see that there are more dependences among the nodes found than there are
given by the M9 network. This  is  obvious, since the dependence relationships  are propagated
through the network. Due to this it  is  also clear that rules like A1 ® A9 ¬ A3 are found by the
algorithm, too. However, the dependence relationships between A1 and A9, and A3 and A9 are
weaker than between A1 and A6, and A3 and A6. So it is possible to infer by the scoring values that
A6 mediates between A1 or A3 and A9. Fortunately the rules A1 ® A6 ® A9 and A3 ® A6 ® A9 are
found, too. (see Appendix A – Tables 4 and 5)

A1 A2 A3

A7A6A5A4

A8 A9

A1 A2 A3

A7A6A5A4

A8 A9

Figure 5: Network structure of M9 network (for a complete
definition see Appendix B)

Figure 6: Dependency graph as representation of an adjacency matrix for a
dataset generate by the M9 network (red edges represent negative
relationships, green edges represent positive relationships and the thickness of
these edges represent how strong this relationship is; yellow edges are known
edges from the generative RuleSet)

In Table 4 and Table 5 the results of  a test run with 10 different dataset generated by the M9
network are given for both test statistics, the Pearson correlation and the log odds ratio. The M9
network serves as an example – however, we discovered that the following parameter sets for the
lower and the upper limit provide the best results for all networks we have tested:

• qlower = 0.2 and qupper = 0.2

• qlower = 0.1 and qupper = 0.2

• qlower = 0.1 and qupper = 0.1

Depending on the network structure one of them provides the best results. In the case of the M9
network (see Figure 5) the cutoff set (0.1,0.2) provides the best results for both measures, the
Pearson correlation and the log odds ratio. 

The  CCU rule  A1 ® A6 ¬ A3 may  serve  as  an  example  for  Table 4:  with  the  parameter  set
qlower = 0.2 and  qupper = 0.3 the rule is not found. With  qlower = 0.2 and  qupper = 0.2 the rule is
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found in 100 percent of the runs, where the average minimal scores over all runs is 0.18 and the
average median over all scores is 1.13. Since the minimal score is the same for the parameter set
qlower = 0.1 and qupper = 0.2 and the minimal scores for rules with A1 ® A6 or A3 ® A6 are greater
than 0.18, it seems plausible that the weakest dependence, in this example, is found for dep(A1,A3|
A6). 

It seems that the number of rules of the Pearson correlation is in general larger than the number of
results returned by the log odds ratio. The results of the Pearson correlation are not better than
the results of the log odds ratio, since the Pearson correlation finds more non-type 1 rules. It is
possible to rank the results by a scoring function. 

How often a rule is found during several runs can be varying – rules with a low frequency are often
rules of type 2 and type 4, this could make it possible to use the frequency over several runs also as
scoring function to remove possibly bad results – but due to this it is possible to loose also type 1
rules. Unfortunately, like type 1 rules, type 3 and type 4 rules can have a high frequency, too. 

In combination with the scoring function it is possible to rank the rules by using the minimum and
the median distance values to the cutoff values. We discovered that most of the type 1 and type 2
rules have a higher score than rules of type 4. Unfortunately the rules of type 3 can have a high
score, too. So it is necessary to have an expert to check the results.

To restrict the number of results makes sense only, if there are many more rules than the expert
can handle.

Between the rules one can find in the result set, there can be differences between both measures,
the Pearson correlation and the log odds ratio. It seems to be a good idea to use not only a single
measure, to gain a better exploitation of the domain of results. 

Known  Problems
Our experiments show that not all  rules implied by the initial  network can be
found. It is a problem to find certain rules in graphs with inhibiting edges, e.g. in
Figure 7 the rule B ® A ¬ C. The dependences between A and B, A and C, and
the independence between B and C are found by the algorithm, but the algorithm
is not able to find the conditional dependence relationship between B and C given A, since D is
also a cause of A and it acts as noise concerning the relationship A,B,C. Due to this the test statistic
for the conditional test dep(B,C|A) will be below the limit for “strong dependence”. In this case,
the formal test for conditional dependence between B and C must be dep(B,C|A,D), but such a
test cannot be done by the algorithm, since it considers only triplets. 

A second known problem is the fact that certain rules are found, whose edges have
incorrect directions. Provided the the graph given in Figure 8, the algorithm finds one
of the following CCC rules B ¬ A ® C, B ® A ® C and B ¬ A ¬ C, but one would
expect either the CCU rule B ® A ¬ C or the CCC rule C ® B ® A. It is easy to
see, that it is not possible to find the CCU rule, since B and C are dependent. Since
the algorithm is a greedy approach, it incorrectly finds the CCC rule. The first match is
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given as result and it is not checked whether there are better matches. In general, it is likely that the
problem of edges with wrong directions arises because of the Markov-equivalence11.

A third problem arises for special activation functions. The XOR-relationships is an example, since it
is  not  possible  to find XOR-relationships  for  rules  A ® B ¬ C, where B = XOR(A,C).  This  is
because the unconditioned test will find no relationship between (A,B) and (B,C). The same holds
for the biimplication.

B
0 1

C
0 1

A 
0 ¼ ¼ 

1 ¼ ¼ 
B 

0 ¼ ¼ 

1 ¼ ¼ 

There are also some strange side effects possible: given the M9 network as shown in Figure 5, with
the following activation functions for the nodes A5 = AND(A1,NOT(A3)) and A6 = XOR(A1,A3). As
an example, with the log odds ratio a causal chain between the nodes A3, A5 and A8 will be found,
since the nodes A5 and A6 have the same inputs from the nodes A1 and A3, and the activation
functions is similar in three of four combinations. 

Summary
The Extended LCD is not capable to find all possible causal structure in a given data set, since it
considers only triplets. The restriction to triplets can lead to a violation of the d-separation criterion.
Nevertheless, the algorithm provides good results, which can be used as working hypothesis. It is
also possible to rank the results by a scoring function. This ranking can serve as heuristic to find the
most promising results.

11 Two directed acyclic graphs are Markov-equivalent  if  and only if  they have the same skeleton (the underlying
undirected graph) and the same head-to-head structures.
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Inductive causation can provide good results, if it is used as explorative approach to find working
hypotheses for further tests. We introduced a scoring function to judge the different rules. The
scoring function proved to be helpful to restrict further experiments to the most promising rules.
There are some causal relationships, which cannot be found and it turned out, that the direction of
a rule can be incorrect, but nevertheless the benefit of the rules that are found can be big enough
as assistance.

Pearson correlation and log odds ratio, both measures are shown to be suitable to find causal
relationships in a binary dataset. The log odds ratio provides slightly better results than the Pearson
correlation,  since  the log  odds  ratio  is  more precise  for  extreme contingency  tables  than the
Pearson correlation. Unfortunately, the effort for the log odds ratios bootstrapping increases the
runtime of  the algorithm. Because of  the distance estimation to decide when bootstrapping is
needed  or  when  the  approximation  is  good  enough,  it  is  possible  to  reduce  the  runtime
substantially – but it keeps expensive. An advantage of the Pearson Correlation is that it will work
also  with  non-binary  datasets.  The  scalar  product  is  not  suitable  as  measure  for  testing  for
independence and dependence. 

It  turned out that the algorithm is  not capable to find all  possible  rules,  since the d-separation
criterion  and  the  CCC  and  CCU  rule  are  not  based  on  the  same  conditions.  d-separation
describes independence relationships in a graph, the CCC and CCU try to build up a simple graph
by using independence and dependence relationships between three variables in a given data set.
Due to the fact that only three variables are viewed to find such a rule, the algorithm may not be
capable to find more complex causal relationships.

The following topics can be interesting subjects for further work and research:

• Comparing treatment and control group results:
The MELK data is derived for two groups: one group is treated with some substances,
the other serves as a control group to determine how effective the treatment is. It  is
possible that the causal relationships can change between these groups.

• Combining results of several runs:
Combing the results of several runs to enhance the profit for the experts.

• Testing conditional (in)dependence with more than one conditional variable:
It  turned  out,  that  it  is  necessary  to  test  not  only  for  triplets,  since  there  are  some
relationships  where  more than  three  variables  are  important.  Testing  with  all  known
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neighbors  as  condition  to  determine  more  complex  relationships  might  improve  the
results.

• Performance Tuning:
Due to the fact that our main interest was the correctness of inductive causation – not the
performance improvement of its algorithm – there might be some possibilities to enhance
the  performance  of  the  MelCD algorithm.  Especially  the  log  odds  ratio  has  a  poor
runtime performance. It might be possible to find a better approximation for the log odds
ratio or to do further performance tuning for the bootstrapping method.

• To use other measures for dependence and independence:
It might be useful to use, for example, the information gain as measure.
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Table 4: Pearson correlation as test statistic for 10 datasets generated by M9 network with “medium noise” 
For different parameter sets the lower and upper cutoff values are shown in the columns and when a rule was found by
the algorithm, its frequency and evaluation measures are shown.
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theta=(0.2,0.3) theta=(0.2,0.2) theta=(0.1,0.2) theta=(0.1,0.1)
type node indicesevaluationperc. min medianperc. min medianperc. min medianperc. min median
CCU 1,4,2 + 100% 0,32 1,82
CCU 1,4,3 + 100% 0,28 1,81
CCU 1,5,3 + 100% 0,16 1,12 100% 0,16 1,10 100% 0,92 2,29
CCU 1,5,7 - 40% 0,03 1,01
CCU 1,6,3 + 100% 0,18 1,13 100% 0,18 1,11 100% 0,92 2,33
CCU 1,6,7 - 30% 0,05 1,02
CCC 1,6,8 + 100% 0,23 0,75 100% 0,83 1,15 100% 0,80 1,12 100% 0,86 3,18
CCC 1,6,9 + 100% 0,22 0,75 100% 0,84 1,14 100% 0,82 1,11 100% 0,88 3,17
CCU 1,8,3 ~ 100% 0,20 1,75
CCC 1,8,9 -
CCU 1,9,3 ~ 100% 0,19 1,77
CCC 1,9,8 - 10% 0,02 0,20 10% 0,02 0,79
CCU 2,4,3 + 100% 0,34 1,82
CCU 2,4,5 - 100% 0,21 1,74
CCU 2,4,6 - 100% 0,20 1,71
CCU 2,4,8 - 10% 0,01 1,30
CCU 2,4,9 - 10% 0,03 1,29
CCU 2,7,3 + 100% 0,19 1,12 100% 0,92 2,32
CCU 2,7,5 wd 30% 0,01 1,04
CCC 3,6,8 + 100% 0,22 0,74 100% 0,82 1,13 100% 0,81 1,10 100% 0,86 3,15
CCC 3,6,9 + 100% 0,22 0,76 100% 0,83 1,14 100% 0,83 1,12 100% 0,92 3,15
CCC 3,8,9 -
CCC 3,9,8 - 20% 0,00 0,19 20% 0,00 0,78
CCC 4,1,5 +
CCC 4,1,6 +
CCC 4,1,8 ~ 100% 0,10 0,60
CCC 4,1,9 ~ 100% 0,11 0,60
CCU 4,2,7 wd 20% 0,02 0,89 20% 0,02 0,85 100% 0,67 1,82
CCC 4,3,5 +
CCC 4,3,6 +
CCU 4,3,7 wd 20% 0,02 0,91 20% 0,02 0,88 100% 0,68 1,85
CCC 4,3,8 ~ 90% 0,11 0,59
CCC 4,3,9 ~ 100% 0,11 0,60
CCC 4,5,6 ~
CCC 4,5,8 - 70% 0,04 0,52
CCC 4,5,9 - 50% 0,05 0,53
CCC 4,6,8 ~ 100% 0,38 0,84 100% 0,38 0,81 100% 0,89 2,12
CCC 4,6,9 ~ 100% 0,37 0,85 100% 0,37 0,83 100% 0,92 2,10
CCC 4,8,9 - 60% 0,25 0,38
CCC 4,9,8 - 40% 0,24 0,36
CCC 5,1,8 ~
CCC 5,1,9 ~ 10% 0,02 0,17 10% 0,02 0,75
CCC 5,3,7 + 30% 0,12 1,13 30% 0,12 1,11 100% 0,90 2,35
CCC 5,3,8 ~
CCC 5,3,9 ~
CCC 5,6,8 ~ 100% 0,14 0,69 100% 0,71 1,04 100% 0,70 1,01 100% 0,86 2,86
CCC 5,6,9 ~ 100% 0,12 0,69 100% 0,69 1,05 100% 0,69 1,01 100% 0,87 2,84
CCC 5,8,9 - 60% 0,06 0,14 60% 0,08 0,69
CCC 5,9,8 - 30% 0,06 0,12 30% 0,06 0,68
CCC 6,3,7 + 30% 0,16 1,14 30% 0,16 1,11 100% 0,86 2,35
CCC 7,3,8 ~ 100% 0,62 1,75
CCC 7,3,9 ~ 100% 0,66 1,76
CCC 7,5,8 - 10% 0,03 0,86
CCC 7,6,8 ~ 100% 0,62 0,99
CCC 7,6,9 ~ 100% 0,66 1,01
CCC 7,8,9 - 20% 0,08 0,63
CCC 7,9,8 - 60% 0,13 0,59
CCC 8,6,9 + 100% 0,94 1,35 100% 0,94 2,52 100% 0,86 2,52 100% 0,86 6,05
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Table 5: Log odds ratio as test statistic for 10 datasets generated by M9 network with “medium noise” 
For different parameter sets the lower and upper cutoff values are shown in the columns and when a rule was found by
the algorithm, its frequency and evaluation measures are shown.
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theta=(0.2,0.3) theta=(0.2,0.2) theta=(0.1,0.2) theta=(0.1,0.1)
type node indicesevaluationperc. min medianperc. min medianperc. min medianperc. min median
CCU 1,4,2 + 100% 0,80 1,27
CCU 1,4,3 + 90% 0,72 1,27
CCU 1,5,3 + 100% 0,64 0,75 100% 0,64 0,75 100% 0,94 2,33
CCU 1,5,7 -
CCU 1,6,3 + 10% 0,10 0,22 100% 0,66 0,75 100% 0,66 0,80 100% 0,94 2,36
CCU 1,6,7 -
CCC 1,6,8 + 100% 0,29 1,63 90% 0,28 1,63 90% 1,57 4,26
CCC 1,6,9 + 100% 0,28 1,61 100% 0,28 1,61 100% 1,57 4,23
CCU 1,8,3 ~ 60% 0,63 1,23
CCC 1,8,9 - 50% 0,29 0,89
CCU 1,9,3 ~ 60% 0,62 1,24
CCC 1,9,8 -
CCU 2,4,3 + 100% 0,75 1,28
CCU 2,4,5 - 60% 0,61 1,21
CCU 2,4,6 - 60% 0,61 1,20
CCU 2,4,8 -
CCU 2,4,9 -
CCU 2,7,3 + 10% 0,11 0,27 100% 0,64 0,78 100% 0,64 0,78 100% 0,95 2,34
CCU 2,7,5 wd
CCC 3,6,8 + 100% 0,28 1,63 100% 0,28 1,63 100% 1,55 4,26
CCC 3,6,9 + 100% 0,28 1,61 100% 0,28 1,61 100% 1,56 4,22
CCC 3,8,9 - 10% 0,28 0,86
CCC 3,9,8 - 30% 0,25 0,86
CCC 4,1,5 + 70% 0,21 0,50
CCC 4,1,6 + 80% 0,20 0,50
CCC 4,1,8 ~
CCC 4,1,9 ~
CCU 4,2,7 wd 100% 0,94 1,52
CCC 4,3,5 + 50% 0,21 0,50
CCC 4,3,6 + 80% 0,20 0,49
CCU 4,3,7 wd 100% 0,94 1,54
CCC 4,3,8 ~
CCC 4,3,9 ~
CCC 4,5,6 ~ 20% 0,18 0,40
CCC 4,5,8 -
CCC 4,5,9 -
CCC 4,6,8 ~ 100% 0,89 3,79
CCC 4,6,9 ~ 90% 0,87 3,74
CCC 4,8,9 -
CCC 4,9,8 -
CCC 5,1,8 ~ 90% 0,18 0,48
CCC 5,1,9 ~ 90% 0,16 0,48
CCC 5,3,7 + 100% 0,45 2,34
CCC 5,3,8 ~ 70% 0,17 0,48
CCC 5,3,9 ~ 100% 0,17 0,48
CCC 5,6,8 ~ 100% 0,19 1,56 100% 0,19 1,56 100% 1,37 4,12
CCC 5,6,9 ~ 100% 0,17 1,54 100% 0,17 1,54 100% 1,34 4,08
CCC 5,8,9 - 20% 0,17 0,85
CCC 5,9,8 -
CCC 6,3,7 + 100% 0,43 2,34
CCC 7,3,8 ~ 30% 0,26 2,05
CCC 7,3,9 ~ 50% 0,21 2,01
CCC 7,5,8 -
CCC 7,6,8 ~ 30% 0,26 3,36
CCC 7,6,9 ~ 50% 0,21 3,31
CCC 7,8,9 -
CCC 7,9,8 -
CCC 8,6,9 + 100% 0,63 1,38 100% 1,44 2,56 50% 1,46 2,58 60% 3,91 6,14
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In this  Section the exact definition of  the M9 network as shown in Figure 5 is given as Matlab
source  code.  According  to  Section 4.4 for  each  node  the  function  f is  specified  by  a  Matlab
function. For the parents of a node the function g is specified by another Matlab function. A positive
influence is denoted by 1 and a negative influence is denoted by -1.

The rule set format is formally defined as:

child_node = {{f}, {parent_node, g, {e, [1|-1]}}+}

M9 network  definition
    std_dev = 0.4;
    
% M9 network rule set
    RuleSet{4} = { { @supportAggregationFunction } , 
                   { 1, @supportRule, { std_dev,  1 } },
                   { 2, @supportRule, { std_dev, -1 } },
                   { 3, @supportRule, { std_dev,  1 } } 
                 };
    RuleSet{5} = { { @supportAggregationFunction } ,
                   { 1, @supportRule, { std_dev,  1 } },
                   { 3, @supportRule, { std_dev,  1 } } 
                 };
    RuleSet{6} = { { @supportAggregationFunction } ,
                   { 1, @supportRule, { std_dev, -1 } },
                   { 3, @supportRule, { std_dev, -1 } } 
                 };
    RuleSet{7} = { { @supportAggregationFunction } ,
                   { 2, @supportRule, { std_dev, -1 } },
                   { 3, @supportRule, { std_dev, -1 } } 
                 };
    RuleSet{8} = { { @supportAggregationFunction } ,
                   { 6, @supportRule, { std_dev, -1 } }
                 };
    RuleSet{9} = { { @supportAggregationFunction } ,
                   { 6, @supportRule, { std_dev, -1 } }
                 };
% supportAggregationFunction
function [result] = supportAggregationFunction(value)
    sum_of_values = 0;
    
    for i = 1 : length(value)
        sum_of_values = sum_of_values + value{i};
    end
    
    if (sum_of_values > 0)
        result = 1;
    else
        result = 0;
    end
    
% supportRuleFunction    
function [result] = supportRule(m_value, stddev, signum)
    result = randn * stddev + signum * (m_value – 0.5);
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Glossary

Glossary

A, B, C, A1,..., Am random variables, nodes in a graph 

a, b, c, a1,..., am values for random variables

P(A = a) probability for random variable A taking value a

P(A = a,B = b) probability for joint event A = a and B = b 

P(A = a|B = b) conditioned probability for A = a given B = b 

P(A) short form for probability for random variable A taking all values a

®, ¬ (possible) causal relationship, e.g. A ® B  means: A causes B

dep(A,B) dependence between A and B

indep(A,B) independence between A and B

dep(A,B|C) dependence between A and B given C

indep(A,B|C) independence between A and B given C

Ei,j expected value under null hypothesis of independence with

N

n n
 E .ji.

ji, =

a sample mean value for all ai 

Var(A) sample variance of A with

( ) 




 −= ∑

=

2n

1i

2
i ana

1-n
1

AVar

Cov(A,B) sample covariance of A and B with

( ) 




 −= ∑

=

banba
1-n

1
BA,Cov

n

1i
ii

~ D distributed as distribution D

~ D approximative distributed as distribution D

N(m,s) normal distribution with the mean parameter m and standard deviation s

X2
1 chi-squared distribution with one degree of freedom
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